Define an equivalence relation on $X = \{1, 2, 3, 4\}$ having three equivalence classes. 4.

b) Let
$$A_n = \{x \in \mathbb{R} : x > n\}$$
 $(n \in \mathbb{N})$. Find $\bigcap_{n=1} A_n$. [2+2]

Prove that the number of reflexive relations on a set containing n elements is 2^{n^2-n} . 3. [4]

5.	Def	fine a binary relation ρ on \mathbb{R} as follows : 'a ρ biff $a - b \in \mathbb{Q}$, $(a, b \in \mathbb{R})$ ' Show that ρ is a	n
	equ	aivalence relation. Find the equivalence class containing 0.	[4]
An	swer	r <u>Q.No. 6</u> and <u>any two</u> : [5]	$+2 \times 4]$
6.	a)	Define a closed set.	[1]
	b)	Give example of a set which has exactly five limit points.	[1]
	c)	Give example of sets S of real numbers such that S is not an interval and (i) Sup (S) belongs to	С
		S and (ii) Sup (S) does not belongs to S.	[2]
	d)	Show that countable union of closed sets may not be closed.	[1]
7.	a)	Prove that a set which is the complement of an open set is closed.	[2]
	b)	Is every closed set, complement of some open set?	[2]
8.	a)	Prove that any superset of a dense set is dense again.	[3]
	b)	Give example of uncountably many dense subsets of ${\mathbb R}$, the set of all reals.	[1]
9.	a)	Prove that the set of naturals \mathbb{N} is equipotent with \mathbb{N}^2 .	[2]

b) Find disjoint subsets A_i (i = 1, 2, 3, 4, 5, ...) of set of naturals \mathbb{N} , such that their union is \mathbb{N} . [2]

Group – **B**

Answer any two :

: 14/09/2015

Time : 11 am – 1 pm

Date

1.

2.

10. If $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a pair of intersecting straight lines, show that the area formed by the bisectors of the angles between them and the x-axis is $\frac{1}{2} \frac{g^2 - ca}{h^2 - ab} \frac{\sqrt{(a-b)^2 + 4h^2}}{|h|}$ [6]

 $[2 \times 6]$

[4]

Full Marks : 50

- [4]

MATHEMATICS (Honours)

RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College under University of Calcutta)

> FIRST YEAR [2015-18] B.A./B.Sc. FIRST SEMESTER (July – December) 2015 Mid-Semester Examination, September 2015

> > Paper: I

[Use a separate answer book for each group]

11. Show that the equation of the circle which passes through the focus of the parabola $\frac{2a}{r} = 1 + \cos \theta$

and touches it at the point $\theta = \alpha$ is given by $r^2 \cos^3 \frac{\alpha}{2} = a \cos\left(\theta - \frac{3\alpha}{2}\right)$. [6]

[6]

[2×4]

[1×5]

- 12. Reduce the equation $6x^2 + 24xy y^2 60x 20y + 80 = 0$ to its canonical form and state the nature of the conic represented by it. Also find the equations of its axes.
- 13. Answer any two questions :

a) Find the differential equation of a system of confocal conics $\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1$ where λ is the arbitrary parameter. [4]

b) Solve:
$$\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy \frac{dy}{dx} = 0.$$
 [4]

c) Solve
$$\frac{dy}{dx} + 2y \tan x = \sin x$$
 when $x = \frac{\pi}{3}$, $y = 0$; show also that the maximum value of y is $\frac{1}{8}$. [4]

14. Answer any one question :

a) Prove that the necessary and sufficient condition that the equation Mdx + Ndy = 0 will be exact is that $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$. [5]

b) Show that the substitution $u = x^2 + y^2$, $v = x^2 - y^2$, transforms the equation (px - y)(x - py) = 2p, where $p = \frac{dy}{dx}$, into Clairauts form. Also deduce the general and singular solutions of the original equation. [5]

_____× __